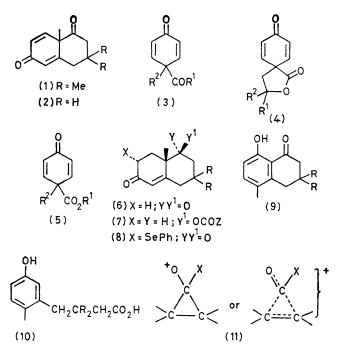
Synthesis of 3,4-Dihydro-3,3,8a-trimethylnaphthalene-1,6(2H,8aH)-dione, a 4-Acylcyclohexa-2,5-dienone

By JAVID HUSSAIN ZAIDI and ANTHONY J. WARING*


(Chemistry Department, University of Birmingham, P.O. Box 363, Birmingham B15 2TT)

Summary The synthesis is reported of the first simple geminal acyl-substituted cyclohexadienone, which is shown to undergo very easy deacylation with formation of a phenolic ring; similar cleavage, or a formal retro-Fries rearrangement, have so far prevented isolation of the analogous 4-acetyl-4-methylcyclohexa-2,5-dienone.

WE report the synthesis and properties of 3,4-dihydro-3,3,8a-trimethylnaphthalene-1,6(2H,8aH)-dione (1) which is of interest as the first simple 4-acylcyclohexa-2,5dienone. This type of compound, of general structure (3; $\mathbb{R}^1,\mathbb{R}^2 = alkyl$) represents the product of *ipso* acylation of a 4-substituted phenol. A recent attempt to prepare the formyl compound (3; $\mathbb{R}^1 = H$, $\mathbb{R}^2 = Me$) failed because of its ready deformylation.¹ In contrast, a number of 4alkoxycarbonyl dienones have been made. The lactones (4; $\mathbb{R}^1 = OEt$, $\mathbb{R}^2 = CO_2Et$,² and $\mathbb{R}^1 = OMe$, $\mathbb{R}^2 = CO_2Me^3$) are sensitive intermediates in syntheses of disodium prephenate, and the lactones (4; $\mathbb{R}^1 = \mathbb{R}^2 = H$, and $\mathbb{R}^1 = H$, $\mathbb{R}^2 = CO_2Et$)⁴ and the more stable esters [5; $\mathbb{R}^1 = Me$ or Et, and $\mathbb{R}^2 = Me$, Et, \mathbb{P}^1 , $\mathbb{CH}_2\mathbb{P}$, \mathbb{P} h, $\mathbb{CH}_2\mathbb{C}_2\mathbb{E}$ t, and $\mathbb{CH}_2\mathbb{C}_2\mathbb{C}_3Me$] have been reported.¹⁻⁷

Our initial target was 4-acetyl-4-methylcyclohexa-2,5dienone ($\mathbf{3}$; $\mathbf{R}^1 = \mathbf{R}^2 = \mathbf{M}\mathbf{e}$). Attempts to prepare this by dehydrogenating the corresponding 4-acetyl-4-methylcyclohex-2-enone† with selenium dioxide in t-butyl alcohol⁸ gave only 4-methylphenol. With 2,3-dichloro-5,6-dicyano-1,4benzoquinone (DDQ)⁸ or benzeneseleninic anhydride⁹ in non-polar solvents the product was 4-methylphenyl acetate. Because these types of dehydrogenation involve different types of reactions we believed that the only reasonable common intermediate was the desired dienone. The conversion into 4-methylphenyl acetate represents the formal reversal of a Fries rearrangement. To avoid this type of reaction we turned to bicyclic compounds.

The Wieland-Miescher ketone (6; R = H) and its analogue (6; R = Me) upon heating with DDQ or benzeneseleninic anhydride in benzene[‡] gave only the phenols (9; R = H)¹⁰ and (9; R = Me),[†] presumably, in one reaction at least, by dienone-phenol rearrangement of (1) and (2). We therefore prepared selectively§ the α -phenylselenok ketone (8; R = Me) from (6; R = Me) and phenylselenyl chloride.^{2,4,11} Oxidation by ozone in dry ether at - 78 °C to form the phenylselenoxy ketone, and warming at room temperature led to the desired dienone (1), purified by column chromatography on silica.¶[†] Oxidation of (8) by hydrogen peroxide, which succeeds in the preparations of 4-alkoxycarbonylcyclohexa-2,5-dienones,^{1,2,4} failed to give (1) owing, we believe, to its ready cleavage (*vide infra*).

The dienone $(1)^{\dagger}$ is a white crystalline solid, m.p. 71-73 °C. When pure it is thermally stable in boiling benzene (< 2% reaction in 80 h), but it is highly unstable in acidic or alkaline solution. Nucleophilic attack on the 1-ketone group of the vinylogous β -diketone function allows aromatisation of the dienone ring and cleavage of the other ring. In 5 imes 10⁻⁵, 5 imes 10⁻⁴, and 5 imes 10⁻³M aqueous H₂SO₄ at 25 °C its half-lives, for clean 1st order conversion into the acid (10; R = Me),[†] are 3000, 350, and 75 s, respectively. In 10⁻⁴ and 10⁻³ M aqueous NaOH the half-lives at 25 °C for cleavage to the anion of (10; R = Me) are 490 and < 6 s, respectively. In concentrated aqueous sulphuric acids the dienone (1) rearranges rapidly to the phenol (9; R = Me), † but not directly. Rapid cleavage $(t_{1/2} < 2 \text{ s})$ gives the acid (10; R = Me) which then cyclises relatively slowly by a Friedel-Crafts type of acylation. This step, $(10; R = Me) \rightarrow$ (9; R = Me) has half-lives in 79 and 69% H_2SO_4 of 490 s and 10 h, respectively, at 25 °C, and has precedent in the literature conversion of (10; R = H) into (9; R = H).¹⁰

The dienones (5; $\mathbb{R}^1 = \mathbb{E}t$, $\mathbb{R}^2 = \mathbb{M}e$ and $\mathbb{E}t$) rearrange to phenols *via* 1,2-ester migration, with $t_{1/2}$ in $\mathbb{CF}_3\mathbb{CO}_2\mathbb{H}$ at 38.5 °C of 120 and 277 min, respectively.⁶ In contrast, our

† New compounds gave satisfactory microanalytical and/or mass spectrometric data, and i.r., ¹H n.m.r., and u.v. spectra.

[±] These conditions allow excellent conversions of (7, R=H, Z=Me or CF₃) into the corresponding cyclohexadienones.

§ Similar selectivity was absent for reaction of (6; R=H).

¶ Similar attempts to prepare (3; $R^1=R^2=Me$) from 4-acetyl-4-methyl-6-phenylselenocyclohex-2-enone have so far given only 4-methylphenol and its acetate, in a ratio which varies with the reaction solvent. In contrast, all the alkoxycarbonyl dienones (5) were made from the cyclohexenones with SeO₂ or DDQ, or by a route involving final acid treatment.⁶

acyl dienone (1) is completely converted into (9; R = Me) and a minor side product in less than 3 min at -10 °C. In CD_2Cl_2 containing 2% of CF_3CO_2H at -10 °C the pseudo 1st order rate constant for (1) \rightarrow (9; R = Me) is $2 \cdot 2 \times 10^{-3} \text{ s}^{-1}$ (half-life 300 s). This reaction does not proceed via the acid (10; R = Me). A qualitative comparison of these rates with earlier data^{6,12} implies that the migratory aptitude of the acyl group is considerably greater than that of an ethoxycarbonyl group. If the acyl migration in $(1) \rightarrow (9; R = Me)$ involves two successive concerted 1,2-shifts via a spiran intermediate⁸ this result would be consistent with a transition state resembling (11). The mesomeric stabilisation of a migrating ethoxycarbonyl group would be wholly or partly lost on passing into (11; X = OEt), whereas an acyl group lacks this stabilisation throughout and should have a lower activation energy for migration. Our results cannot exclude the possibility that (1) leads to (9; R = Me) via a phenolacylium ion complex similar to that presumably involved in the rearrangement of (3; $R^1 = R^2 = Me$) to 4-methylphenyl acetate.

J. H. Z. is grateful to the British Council for the award of a Scholarship.

(Received, 26th March 1980; Com. 324.)

¹S. Danishefsky, C. F. Yan, R. K. Singh, R. B. Gammill, P. M. McCurry, Jr., N. Fritsch, and J. Clardy, J. Am. Chem. Soc., 1979, 101, 7001.

- ² W. Gramlich and H. Plieninger, Chem. Ber., 1979, 112, 1571.
- ³ S. Danishefsky, H. Hirama, N. Fritsch, and J. Clardy, J. Am. Chem. Soc., 1979, 101, 7013. ⁴ H. Plieninger and W. Gramlich, Chem. Ber., 1978, 111, 1944.
- ⁵ S. Danishefsky, T. Harayama, and R. K. Singh, J. Am. Chem. Soc., 1979, 101, 7008.
- ⁶ J. N. Marx, J. C. Argyle, and L. R. Norman, *J. Am. Chem. Soc.*, 1974, 96, 2121. ⁷ H. Plieninger, G. Ege, H. J. Grasshoff, G. Keilich, and W. Hoffman, *Chem. Ber.*, 1961, 94, 2115.
- ⁸ A. J. Waring, Adv. Alicyclic Chem., 1966, 1, 129.
 ⁹ D. H. R. Barton, D. J. Lester, and S. V. Ley, J. Chem. Soc., Chem. Commun., 1978, 130.
- ¹⁰ J. P. John, R. K. Natarajan, S. Swaminathan, and P. S. Venkataramani, Can. J. Chem., 1968, 46, 2320. ¹¹ K. B. Sharpless, R. F. Lauer, and A. Y. Teranishi, J. Am. Chem. Soc., 1973, 95, 6137.
- 12 M. J. Hughes and A. J. Waring, J. Chem. Soc., Perkin Trans. 2, 1974, 1043.